Algoritma dan Pemrograman: Implementasi Metode Interpolasi Newton
Table of Contents
Langsung saja, saya tidak bahas bagaimana teori dari interpolasi newton. Biar teman-teman sendiri yang mencarinya. Saya hanya memberikan gambaran bagaimana implementasi Interpolasi Newton dalam algoritma dan pemrograman. Berikut algoritma interpolasi newton :
Berikut implementasi dalam pemrograman java :
/**
*
* @author ABD. CHARIS FAUZAN
*/
public class interpolasi {
public static void main(String[] args) {
int data[] = {
250, 235, 241,
230, 0, 238,
240, 251, 254
};
int n = data.length;
int len = n - 1;
int x[] = new int[n];
double a[][] = new double[n][n];
double fx[] = new double[len];
for (int i = 0; i < n; i++) {
x[i] = i;
a[i][0] = data[i];
}
for (int i = 1; i < n; i++) {
for (int j = 0; j < n - i; j++) {
a[j][i] = (a[j + 1][i - 1] - a[j][i - 1]) / (x[j + i] - x[j]);
}
}
System.out.println("");
// matriks diperbesar 2x
double matriks2x[][] = new double[6][6];
double h_hor = (2.0 / 5.0);
double h_ver = (6.0 / 5.0);
int n2 = matriks2x.length;
matriks2x[0][0] = 1;
for (int i = 1; i < n2; i++) {
matriks2x[i][0] = matriks2x[i - 1][0] + h_ver;
matriks2x[0][i] = matriks2x[0][i - 1] + h_hor;
}
for (int i = 1; i < n2; i++) {
for (int j = 1; j < n2; j++) {
matriks2x[i][j] = matriks2x[i][j - 1] + h_hor;
}
}
for (int i = 0; i < n2; i++) {
for (int j = 0; j < n2; j++) {
double f8 = 0;
for (int l = 0; l < n; l++) {
double pengali = a[0][l];
for (int m = 0; m < l; m++) {
pengali = pengali * (matriks2x[i][j] - (m + 1));
}
f8 += pengali;
System.out.print(String.format("%.3f",pengali) + ", ");
}
System.out.println("\nF8() = " + f8);
}
}
}
}
Dan seperti inilah tampilan program ketika dijalankan :


Post a Comment